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As the mathematical modeling 
of a fluid flow becomes more 
sophisticated, the need for 
discretization methods handling 

meshes with mixed types of elements has 
appeared. Practice and experience show that 
the most effective discretization methods 
mimic the underlying properties of original 
continuum differential operators. For the 
linear diffusion problem such methods 
mimic the Gauss divergence theorem needed 
for local mass conservation, the symmetry 
between the continuous gradient and 
divergence operators needed for proving 
symmetry and positivity of the resulting 
discrete operator, and the null spaces of the 
involved operators needed for stability of the 
discretization. 

We have developed a new family of mimetic 
discretizations [1] for diffusion-type 
equations on general polygonal meshes:

 div u = Q ,

 u = –K grad p .

Here p and u denote the fluid pressure and 
velocity, respectively, K denotes a full tensor, 
and Q denotes a source function.

The novel discretization is locally 
conservative and exact for piecewise linear 
solutions (see Fig. 1). This is one of the major 
advances over the capabilities of the existing 
discretizations [2]. For sufficiently smooth 
solutions, our method exhibits a second-
order convergence rate for the fluid pressure 
and a first-order convergence rate for the 
fluid velocity. It confirms the convergence 
rates observed in other types of lower order 
discretizations (finite elements and finite 
volumes) on nonsmooth triangular and 
quadrilateral meshes.

Another important feature of our method is 
the ability to treat meshes with degenerate 
and nonconvex polygons (see Fig. 2). Such 
meshes frequently occur in applications. For 
example, nonmatching meshes and locally 
refined meshes with hanging nodes are 
examples of conformal polygonal meshes. 
Recall that a hanging node occurs when two 
(or more) elements share an edge with one 
element. If we consider the hanging node as 
an additional vertex of this element, we get a 
conformal polygonal mesh with degenerate 
elements. As shown in Fig. 3, our method 
allows a very strong mesh refinement and 
elements with very small edges. 

Nowadays, the use of polygonal meshes 
is limited by a small number of accurate 
discretization schemes. We mention here 
the finite volume scheme proposed by 
T. Palmer [3]. The scheme is exact for 
uniform flows but results in a nonsymmetric 

Figure 1—
Isolines of a lin-
ear solution in the 
old (right) and new 
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coefficient matrix. Therefore, it requires 
the use of nontraditional iterative solvers. 
In contrast, our new discretization method 
results in an algebraic problem with a 
symmetric positive definite matrix. Therefore, 
the problem may be solved with the conjugate 
gradient method.
 
Our newly developed discretization 
methodology is based on the divide and 
conquer principle. First, we consider each 
mesh polygon as an independent domain and 
generate an independent discretization for 
this polygon. Second, the system of element-
based discretizations is closed by imposing 
boundary conditions and continuity 
conditions for the fluid pressure and normal 
velocity component on polygon edges.

The new discretization methodology can be 
extended to unstructured polyhedral meshes 
and to other partial differential equations 

Figure 2—
Polygonal meshes with 
degenerate and noncon-
vex polygons. One of the 
nonconvex elements is 
marked by a circle.

Figure 3—
Left picture shows a 
mesh with a strong local 
refinement. The element 
with 11 edges is marked 
by a circle. The right 
picture shows a non-
matching mesh. Some of 
the polygons have very 
small edges.
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such as Maxwell’s equations, Navier-Stokes 
equations, and equations of linear elasticity.
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